tag²: isomeria di posizione

L’isomeria degli alcheni

Gli idrocarburi alifatici insaturi possono presentare vari tipi di isomeria, per cui composti aventi la stessa formula grezza hanno struttura e proprietà totalmente diverse.
Oltre all’isomeria di struttura comune agli alcani, gli alcheni presentano altri due tipi di isomeria: l’isomeria di posizione e l’isomeria geometrica:

1) isomeria di struttura: si manifesta, come per gli alcani, quando un idrocarburo ha catena aperta o catena ramificata;

2) isomeria di posizione: si ha quando due alcheni hanno la stessa formula molecolare e la stessa formula di struttura, ma differiscono soltanto per la posizione del doppio legame.

Ad esempio, sono isomeri di posizione 1-butene e 2-butene a catena lineare:

CH2 = CH ― CH2 ― CH3                          CH3 ― CH = CH ― CH3
1-butene                                                  2-butene
Con l’allungarsi della catena, il numero dei possibili isomeri di posizione aumenta; ad esempio, l’esene  ha tre isomeri:

1-esene CH2 = CH ― CH2 ― CH2 ― CH2 ― CH3
1

2-esene CH3 ― CH = CH ― CH2 ― CH2 ― CH3
1          2

3-esene CH3 ― CH2 ― CH = CH ― CH2 ― CH3
1            2          3

Il 4-esene e il 5-esene non esistono, perché corrispondono rispettivamente al 2-esene e al 1-esene in quanto la numerazione degli atomi di carbonio della catena comincia sempre dall’estremità più vicina al doppio legame:

CH3 ― CH2 ― CH2 ― CH = CH ― CH3   2-esene
2        1

CH3 ― CH2 ― CH2 ― CH2 ― CH = CH2   1-esene
1

Nel caso si abbia una catena ramificata, bisogna tener conto anche della posizione reciproca della ramificazione e del doppio legame; così ad esempio, il 4-metil-2-pentene può avere altri tre isomeri di posizione, a seconda della posizione occupata dal doppio legame. In questo caso, nella numerazione degli atomi di carbonio, si privilegia il valore numerico piccolo per il doppio legame invece che il radicale metilico.

L’isomeria di posizione acquista particolare importanza nei dieni che differiscono per la posizione relativa dei doppi legami, in base alla quale gli idrocarburi presentano proprietà chimiche diverse. Si possono avere:

– dieni con doppi legami cumulati, detti alleni;
– dieni con doppi legami coniugati;
– dieni con doppi legami isolati.

Se si analizza la molecola del 2-butene ci si accorge che essa può essere rappresentata da due configurazioni diverse che, analogamente a quelle dei cicloalcani bisostituiti, vengono denominate cis- e trans- .
Il prefisso cis- viene assegnato all’isomero nel quale i sostituenti uguali si trovano dallo stesso lato rispetto agli atomi di carbonio che portano il doppio legame, mentre il prefisso trans- viene assegnato all’isomero nel quale i sostituenti uguali sono situati su lati opposti.
Questo tipo di isomeria è detta isomeria geometrica cis- e trans- e dipende dalla rigidità della molecola le cui parti, a causa del doppio legame, non possono ruotare l’una rispetto all’altra come accade negli alcani. Mentre nei cicloalcani la posizione cis- o trans- è determinata nello spazio rispetto al piano dell’anello molecolare, negli alcheni è determinata sul piano, rispetto alla retta cui appartiene il doppio legame.
Presentano isomeria geometrica anche i derivati degli acheni, ma solo quelli nei quali ciascun atomo di carbonio è legato a due atomi o gruppi atomici diversi. Ad esempio, ha isomeria cis- e trans- il dicloroetene.
Non hanno invece isomeria geometrica il tricloro-etene e il tetracloro-etene, perché le due forme apparentemente cis- e trans- sono in realtà la stessa molecola.

Quindi, si può dire che l’isomeria geometrica non può aver luogo quando uno dei due atomi di carbonio impegnati nel doppio legame porta legati atomi o gruppi uguali.
L’isomeria geometrica dipende dalla presenza del doppio legame. Gli atomi di carbonio coinvolti nel doppio legame utilizzano orbitali ibridi sp2 per il legame σ e gli orbitali p non ibridati per il legame π. Il secondo legame è meno forte del primo e da ciò deriva la reattività degli alcheni. D’altra parte, il secondo legame, localizzandosi sopra e sotto l’asse di legame, impedisce la libera rotazione degli atomi. Il secondo legame segnala, allo stesso tempo, un’instabilità chimica della molecola e la sua rigidità fisica. Rispetto al doppio legame, gli atomi o gruppi di atomi possono posizionarsi o dallo stesso lato (forma cis-) o da lati opposti (forma trans-).
Per esprimere questo tipo di isomeria è necessario scrivere le formule di struttura in maniera tale da rispettare non solo il collegamento degli atomi fra loro ma anche la posizione spaziale reciproca assunta nella molecola.
Le formule di struttura, cioè, devono simulare dei modelli tridimensionali. L’isomeria geometrica è, a tutti gli effetti, un particolare tipo di stereoisomeria (isomeria che si realizza nello spazio tridimensionale);

3) isomeria ottica: può verificarsi solo quando nella molecola c’è un atomo di carbonio asimmetrico.

 

La chimica organica non è una scienza staccata dal mondo in cui viviamo, anzi possiamo affermare che essa permea la realtà che ci circonda. Tantissimi oggetti che usiamo quotidianamente sono prodotti della chimica organica: vitamine, aspirine e farmaci, conservanti che permettono ai nostri cibi di non ammuffire, profumi e detersivi,  coloranti, aromi e fibre sintetiche come il nylon, di cui sono fatte le setole dello spazzolino da denti.  È interessante saperne un po’ di più sulla chimica organica ma queste nozioni non vi aiuteranno di certo se volete giocare ai giochi di 888. Per quello affidatevi a buone recensioni online.

13 maggio 2009 Pubblicato da Francesca Brigida 0

L’isomeria di posizione in una catena ramificata e la nomenclatura degli alcani

Gli isomeri di uno stesso composto possono essere anche più di uno. Il diverso modo di disporsi degli atomi in una molecola è già evidente in quelle costituite solo da carbonio e idrogeno. E’ questo, ad esempio, il caso dell’esano C6H14 che può presentarsi, oltre che a catena chiusa, anche con quattro diverse catene ramificate aperte.
Anche la possibilità di dare strutture cicliche implica l’esistenza di molecole con uguale formula molecolare e diversa disposizione degli atomi nello spazio.
Le diverse combinazioni che gli atomi di carbonio e idrogeno possono produrre portano alla formazione di isomeri che differiscono principalmente per le proprietà fisiche, come la densità e il punto di ebollizione. Infatti, gli idrocarburi isomeri hanno proprietà chimiche molto simili, mentre differiscono in modo marcato per alcune proprietà fisiche. In particolare, le sostanze con molecole ramificate bollono a temperature più basse rispetto a quelle con molecole lineari. Ciò succede perché i legami intermolecolari possono stabilirsi in misura minore quando la superficie di contatto fra e molecole è ridotta: le molecole ramificate tendono a chiudersi, formando una sorta di sfera, un solido che racchiude in sé un determinato volume con la minima superficie.
Quanto più si allunga la catena degli atomi di carbonio, tanto più aumenta, in modo esponenziale, il numero dei possibili isomeri. Abbiamo:

– l’ottano C8H18, che può avere 18 isomeri;
– il decano C10H22, che può avere 75 isomeri;
– il pentadecano C15H32, che può avere oltre 4343 isomeri;
– l’idrocarburo C30H62 ha la possibilità teorica di esistere in più di quattro milioni di forme strutturali diverse.

In natura, non tutti gli isomeri esistono o riescono ad essere sintetizzati, ma si crea in ogni caso il problema della loro denominazione.
Il problema è stato affrontato è risolto con la denominazione IUPAC (Internazional  Union of Pure and Applied Chemistry), sin dal Congresso di Ginevra del 1892, quando si preoccupò di fissare un sistema per assegnare i nomi alla sterminata quantità di composti organici. La nomenclatura IUPAC è diffusa in tutto il mondo ma è bene sapere che per molti composti accanto ai nomi sistematici o razionali, ricavati col metodo IUPAC, sono presenti ancora oggi i nomi correnti o comuni, ricavati in base alla loro origine, al loro uso o ad una loro particolare proprietà. I chimici, infatti, indicano a volte lo stesso composto in due o più modi diversi. Molti composti organici hanno dei nomi tradizionali che affondano le radici nella storia della chimica e che non possono essere sistematizzati. Questi nomi possono essere imparati solo col tempo; tuttavia, come già detto, l’infinito numero di composti organici ha reso necessaria la definizione di una nomenclatura sistematica, secondo la quale abbiamo che:

– la catena ramificata di un idrocarburo si può considerare costituita da una catena lineare fondamentale e da uno o più diramazioni, costituite da frammenti di catene più corte che sono dette radicali alchilici, indicati generalmente con R. Un radicale si ottiene rimuovendo da una molecola di un idrocarburo un atomo di idrogeno (con il suo elettrone). I radicali degli alcani prendono il nome sostituendo il suffisso -ano con il suffisso -ile;
– per denominare i composti organici torna assai utile numerare gli atomi di carbonio in base alla loro posizione nella formula di struttura. Nelle molecole ramificate, in caso dubbio, si sceglie come catena lineare fondamentale quella più lunga. Nella nomenclatura IUPAC ciò che determina il nome della molecola è proprio questa catena, detta catena di base o catena principale.
– la numerazione deve partire dall’estremità della catena più lunga e più prossima alla posizione dei sostituenti. I sostituenti sono gruppi di atomi (radicali alchilici per esempio) che, idealmente, vanno a sostituire gli atomi di idrogeno dell’idrocarburo corrispondente alla catena più lunga. Pertanto, si attribuisce un numero progressivo a ogni atomo di carbonio, partendo dall’estremità più vicina alle ramificazioni, e ciò consente di assegnare alla posizione di ogni ramificazione il numero più piccolo possibile. Ad esempio, il pentano indica che vi sono cinque atomi di carbonio nella catena più lunga, che va numerata da destra a sinistra per assegnare al metile il numero più piccolo possibile;
– se i radicali alchilici che costituiscono le ramificazioni sono tutti uguali, si scrivono i loro nomi preceduti dai numeri che indicano la posizione dell’atomo di carbonio al quale sono attaccati e dal prefisso –di, –tri, –tetra, che indica il numero complessivo;
– se i radicali alchilici che costituiscono le ramificazioni sono di diverso tipo, si elencano in ordine alfabetico, sempre preceduti dal numero che ne indica la posizione;
– dopo aver indicato le diverse ramificazioni, si scrive il nome del composto al quale si riferisce la catena fondamentale.

La nomenclatura di tutti i composti organici si basa su quella degli alcani. Dopo aver individuato la catena principale, si utilizzano gli opportuni prefissi e la desinenza varia da famiglia a famiglia.
Un radicale alchilico corrisponde a ciò che resta di un alcano a catena lineare, dopo aver sottratto un atomo di idrogeno al carbonio terminale della catena.
I gruppi alchilici sono i sostituenti saturi legati alla catena base della molecola: contengono solo carbonio e idrogeno e presentano solo legami semplici tra gli atomi di carbonio. Oltre ai gruppi alchilici, si possono anche trovare come sostituenti atomi di alogeni che vengono indicati con il loro nome, ad eccezione dello iodio che viene contratto in iodo. Come già detto, ogni radicale alchilico viene denominato come l’alcano, ma con la desinenza in -ile:
– da —CH4 (metano) si ottiene il radicale metilico —CH3, detto anche gruppo metilico o semplicemente metile;
– da CH3—CH3 si ottiene il radicale etilico o etile —CH2—CH3;
– da CH3—CH2—CH3 (propano) si ottiene il radicale propilico o propile —CH2—CH2—CH3;
– da CH3—CH2—CH2—CH3 (butano) si ottiene il radicale butilico o butile —CH2—CH2—CH2—CH3.
Inoltre, dalla definizione risulta che ogni radicale alchilico è monovalente e può sostituire un atomo di idrogeno nella molecola di un alcano.
Ad esempio, se un idrogeno dell’atomo di carbonio secondario del propano viene sostituito con un gruppo —CH3, si ottiene l’isobutano che prende il nome di 2-metil-propano.

12 dicembre 2008 Pubblicato da Francesca Brigida 0

L’isomeria di struttura

I composti organici, compresi gli idrocarburi, presentano il fenomeno dell’isomeria.
Quando un idrocarburo è costituito da una catena con un numero di atomi di carbonio superiore a tre, si verifica tale fenomeno. Quindi, a volte due composti rappresentati dalla stessa formula bruta possono essere radicalmente diversi, come accade nel caso dell’alcol etilico e dell’etere etilico. La loro formula bruta è C2H6O.
Pertanto, gli atomi di carbonio possono legarsi tra loro per formare lunghe catene lineari (gli n-alcani), ma possono anche dare strutture più complesse e ramificate.
L’esempio più semplice di alcano ramificato che possiamo trovare in chimica organica è l’isobutano. L’isobutano e il butano sono isomeri di struttura. Il butano in condizioni standard è un gas e ha punto di ebollizione -0,6 °C. Invece l’isobutano è il suo isomero che, pur avendo la stessa formula molecolare, ha caratteristiche chimico-fisiche diverse da quelle del butano normale: il suo punto di ebollizione, ad esempio, è -10 °C.
Si definiscono isomeri (dal greco isos: uguale e meros: parte) i composti aventi la stessa formula molecolare (o bruta) ma diversa formula di struttura.
In pratica, due isomeri di struttura sono formati dagli stessi atomi, che però possono essere legati tra loro in diverse combinazioni. Questo fenomeno è piuttosto esteso in chimica organica: oltre al butano, il pentano (C5H12) possiede tre forme isomeriche; il esano (C6H14) possiede cinque forme isomeriche; possono essere calcolati fino a 75 isomeri per il decano (C10H22) e si possono prevedere 6,5 〮10(alla 13esima).
La diversa struttura che caratterizza gli isomeri spesso conferisce loro proprietà fisiche e chimiche diverse.
Esistono diversi tipi di isomeria che si possono distinguere in due categorie fondamentali:
isomeria di posizione o di catena: in tali isomeri gli atomi occupano nella molecola posizioni diverse;
stereoisomeria: in questo caso gli isomeri, generalmente chiamati stereoisomeri, differiscono perché gli atomi delle loro molecole sono legati nella stessa sequenza, ma diversamente orientati nello spazio.
La stereoisomeria comprende gli isomeri conformazionali e gli isomeri configurazionali. Questi ultimi, a loro volta, possono essere distinti in isomeri geometrici e isomeri ottici.
Gli atomi di carbonio che sono legati a un solo altro atomo di carbonio, come quelli posti agli estremi di una catena lineare, sono detti atomi primari; mentre quelli intermedi, che sono cioè legati ad altri atomi due atomi di carbonio, sono detti atomi secondari e, infine, quelli che, in una catena ramificata, sono legati ad altri tre oppure quattro atomi di carbonio, sono detti rispettivamente atomi terziari o quaternari.
Il butano normale presenta due atomi di carbonio primari e due secondari.
L’iso-butano ha tre atomi di carbonio primari e un atomo di carbonio terziario.
Il tipo di isomeria che si instaura quando la catena di atomi di carbonio di un composto passa dalla forma lineare alla forma ramificata, è detta isomeria di struttura.
Per rappresentare i diversi isomeri tornano utili le formule condensate, dette anche formule razionali. Prima di utilizzare tali formule è opportuno sapere che le formule di struttura ordinarie rappresentano solo in modo approssimato le strutture reali delle molecole. Le molecole sviluppano le loro strutture nello spazio tridimensionale rispettando canoni geometrici piuttosto rigorosi, mentre le formule di struttura ordinarie utilizzano uno spazio bidimensionale e solitamente rappresentano soltanto il legame fra gli atomi ma non il modo con cui gli atomi si legano. Nel caso degli alcani, ad esempio, gli angoli di legame, determinati dall’utilizzo di orbitali ibridi sp3, sono di 109°28’ e la geometria delle loro molecole è basata sul modulo del tetraedro. Le formule di struttura, invece, non forniscono queste informazioni.
Le formule di struttura condensate o razionali non consentono di osservare le molecole nello spazio, ma possono qualificare la natura del composto e di distinguere fra loro i diversi isomeri.

12 dicembre 2008 Pubblicato da Francesca Brigida 0

Contatti

Per qualsiasi tipo di informazione, suggerimento, proposta, critica o richiesta, scrivici a info@chimicaorganica.net

Tag popolari

acidi Aforismi alcani alcheni anidride carbonica antipodi ottici atomi primari atomi secondari atomi terziari basi butano carbonio carbonio asimmetrico chimica chimica organica chiralità delocalizzazione elettronica dispense chimica doppio legame frasi GPL idrocarburi idrocarburi insaturi idrocarburi saturi isomeri isomeria isomeria di posizione isomeria di struttura isomeria geometrica isomeria ottica isomeri conformazionali isomeri geometrici laboratorio Lavoisier legame pigreco metano paraffine radicali liberi reazioni reazioni organiche serie omologa sostituenti stereoisomeri stereoisomeria teoria chimica