tag²: delocalizzazione elettronica

La sostituzione radicalica e gli alogenoderivati

Gli alcani, caratterizzati da legami covalenti scarsamente polari, danno luogo a reazioni che procedono con meccanismi radicalici, quali l’alogenazione.
La sostituzione radicalica consiste nella sostituzione di uno o più atomi di idrogeno con altri atomi o gruppi atomici. In particolare, se l’atomo che costituisce l’idrogeno è un alogeno, si ha una reazione di alogenazione.
Ad esempio, il propano, irradiato con luce ultravioletta a temperatura ambiente, in presenza di bromo, sostituisce un atomo di idrogeno con un atomo di bromo formando un alogenoderivato, il 2-bromo-propano:

CH3—CH2—CH3 + Br2 →CH3—CHBr—CH3 + HBr

Analogamente, il metano fornisce con il cloro una miscela di alogenoderivati:

CH4 + Cl2 → CH3Cl + HCl
monoclorometano o cloruro di metile

La reazione di alogenazione del metano si verifica attraverso tre stadi:

inizio: la luce o il calore rompono i legami dell’alogeno formulando due radicali liberi:

Cl2 → 2Cl•

propagazione: il radicale cloro si lega a un idrogeno, dando luogo alla formazione di un radicale metilico:

CH4 + Cl• → HCl + •CH3

A sua volta, il metile reagisce con un’altra molecola di cloro e si forma un nuovo radicale cloro che riprende il ciclo:

•CH3 + Cl2 → CH3Cl + Cl•

Si verifica così una reazione a catena, in quanto uno dei prodotti del secondo passaggio costituisce il reagente del primo. La reazione procede fino a che i reagenti sono disponibili;

termine: la propagazione della reazione viene interrotta dall’accoppiamento di radicali, secondo le possibili combinazioni:

Cl• + Cl• → Cl2

•CH3 + Cl• → CH3Cl

•CH3 + •CH3 → CH3CH3

Esse bloccano la continuazione del processo.
L’alogenazione del metano non si arresta con la formazione di CH3Cl, ma procede dando luogo a una miscela che contiene anche composti ulteriormente alogenati (CH2Cl2, CHCl3, CCl4).
Gli alcani reagiscono con gli alogeni sotto l’influsso della luce ultravioletta, per dare una miscela di composti alogenati che, nel caso del metano, sono utilizzati come solventi. Si tratta di una reazione di sostituzione in quanto gli atomi di alogeno gradualmente si sostituiscono agli atomi di idrogeno degli alcani per dar luogo agli alogenuri alchilici.

CH4 + Cl2 → CH3Cl                                        + HCl
monoclorometano o cloruro di metile

CH3Cl + Cl2 → CH2Cl2                                + HCl
diclorometano o cloruro di metilene

CH2Cl2 + Cl2 → CHCl3                              + HCl
triclorometano o cloroformio

CHCl3 + Cl2 → CCl4                                 + HCl
tetraclorometano o tetracloruro di carbonio

Lo schema di reazione così rappresentato tiene conto solo degli aspetti stechiometrici del processo, ma nulla ci dice sull’effettivo andamento della reazione: quali legami vengono scissi, quali nuovi legami si formano e in che modo. Ogni reazione organica infatti avviene attraverso un ben determinato meccanismo, lo studio del quale richiede opportuni approfondimenti.
Il meccanismo della reazione di alogenazione è il seguente:

per azione dei raggi ultravioletti o della temperatura molto elevata, al molecola del cloro o di un altro alogeno si spezza in due e ciascun atomo riprende l’elettrone che precedentemente aveva messo in comune:

Cl2 → 2 Ċl

avendo un ottetto incompleto, ciascun atomo di cloro è fortemente reattivo e riesce a strappare all’alcano un idrogeno, al quale si lega formando HCl e lascia libero un radicale —R:

RH + Ċl → HCl + Ṙ

il radicale libero reagisce con un altro cloro formando il composto alogenato e liberando un altro atomo cloro:

Ṙ + Cl2 → RCl + Ċl

l’atomo di cloro attacca un’altra molecola di alcano e la reazione continua a catena, fino a che vi sono radicali liberi; cessa invece non appena due radicali si accoppiano, per formare una molecola di cloro o un alcano a catena più lunga:

Ċl + Ċl → Cl2   oppure:   Ṙ + Ṙ → R—R

Negli alcani la sostituzione di un idrogeno legato a un atomo di carbonio terziario è più facile di quella di un idrogeno legato a un atomo di carbonio secondario e questa, a sua volta, è più facile della sostituzione di un idrogeno legato a un atomo di carbonio primario.
Questo spiega perché, nell’alogenazione del propano, si forma il 2-bromo-propano. Infatti, l’atomo di idrogeno che viene sostituito è quello legato al carbonio centrale, che è un carbonio secondario.
Gli alogenoderivati ottenuti sono più reattivi degli alcani, in quanto l’atomo di carbonio legato a un atomo o a un gruppo di atomi X con l’elettronegatività diversa, forma un legame C—X polarizzato, nel quale la delocalizzazione elettronica, cioè lo spostamento della coppia di elettroni verso l’elemento  più elettronegativo, dà ai due atomi una parziale carica elettrica:

δ+          δ¯
C → X   indicata   C   ―  X

δ+      δ‾
cioè:  C ← X  indicata  C — X

Se X è più elettronegativo di C, e ha un orbitale vuoto, è elettrofilo, mentre se è meno elettronegativo di C, e ha un doppietto elettronico disponibile è nucleofilo.
Gli alogeno derivati danno facilmente altre reazioni di sostituzione ottenendo un nuovo composto che può essere ulteriormente trasformato.
Si può dire quindi che la reattività di un alcano-derivato non dipende dalle caratteristiche della catena del carbonio ma dagli atomi o dai gruppi di atomi a essa legati.
La descrizione dettagliata, stadio per stadio, di tutti i processi che si verificano durante il progressivo avanzamento di una reazione è detto meccanismo di reazione.
Esso scaturisce da un’ipotesi teorica che però poggia su una serie di dati ottenuti sperimentalmente. Dal meccanismo di reazione è possibile osservare quali legami si rompono e quali si formano; in tal modo si può capire meglio la reazione e ricordarla con più facilità.
Solitamente, tutte le reazioni avvengono attraverso la scissione e la formazione di legami covalenti. Si possono distinguere due tipi di scissione: l’ omolisi e l’eterolisi.
L’omolisi si ottiene quando due atomi uniti da un doppietto elettronico vengono scissi riavendo ciascuno il proprio elettrone e dando luogo a due frammenti neutri, detti radicali.
L’eterolisi, invece, si ottiene quando entrambi gli elettroni di legame vengono assunti da uno dei due frammenti (solitamente il più elettronegativo) dando luogo a due ioni.
l’alogenazione degli alcani è un esempio di reazione a catena, cioè che avviene attraverso una serie di passaggi che si ripetono ciclicamente in modo che ciascuno crea una particella reattiva che provoca lo stadio successivo.
Se, in particolare, si considera la clorurazione del metano, osserviamo che sperimentalmente tale reazione è avviata per azione del calore o della luce ultravioletta, le energie usate per la scissione omolitica della molecola del cloro, da cui si generano due atomi di Cl• che servono ad avviare la reazione (1° stadio).
Gli atomi di cloro ottenuti, non possedendo l’ottetto completo, diventano particelle molto reattive, ognuna delle quali avvierà una catena di reazione a più stadi. In particolare, nel 2° stadio si ha il consumo della particella reattiva Cl• e la formazione della nuova particella reattiva •CH3, detta radicale.
Nel 3° stadio si consuma una particella •CH3 e si rigenera la particella Cl• .
Gli stadi 2° e 3° sono passaggi di propagazione della catena che consentono la preparazione del composto alogenato. L’alternanza di due stadi, infatti, fa progredire la reazione a catena finché tutto il CH4 si è trasformato in CH3Cl.
Concludendo si può dire che la clorurazione degli alcani è una reazione di sostituzione con meccanismo radicalico.

14 Dicembre 2008 Pubblicato da Francesca Brigida 0

L’effetto mesomerico

Dalla teoria del legame di valenza è possibile esprimere il concetto di risonanza, ossia la possibilità che una molecola ha di essere in continuo passaggio tra le diverse forme, dette formule limite. La molecola protagonista è un ibrido di risonanza fra le varie forme. Questo fenomeno si verifica per esempio per le molecole del benzene e del butadiene.
Alla luce della teoria degli orbitali la risonanza è spiegata con la delocalizzazione elettronica, secondo la quale esistono legami π estesi su più atomi. Questa interpretazione riesce a chiarire in modo soddisfacente anche l’effetto mesomerico, che consiste nello spostamento di elettroni tra atomi appartenenti a sistemi coniugati, anche quando questi sono distanti tra loro.
Ma cos’è un sistema coniugato?
Un sistema coniugato è un sistema costituito da coppie di legami π alternati a legami singoli. L’interazione tra i legami π porta a una parziale sovrapposizione degli orbitali p appartenenti ai due atomi di carbonio uniti con legame semplice, dando luogo alla delocalizzazione elettronica.
La delocalizzazione elettronica avviene anche quando ci sono atomi che presentano doppietti elettronici liberi uniti con doppi legami, come ad esempio il metil vinil etere.
Dato che l’effetto mesomerico provoca lo spostamento degli elettroni in posizioni preferenziali, è opportuno lo studio delle formule limite in risonanza per prevedere la reattività di una molecola. Gli atomi o i gruppi coniugati con un doppio legame possono interagire con esso in due modi diversi.
Abbiamo così due effetti mesomerici:

1) l’effetto mesomerico +M si realizza quando il gruppo cede gli elettroni al carbonio del doppio legame per risonanza;
2) l’effetto mesomerico – M si realizza quando gli elettroni vengono ceduti dal doppio legame al gruppo.

Bisogna infine tener presente che, al contrario dell’effetto induttivo, l’effetto mesomerico non ha limiti di trasmissione in un sistema coniugato.

12 Dicembre 2008 Pubblicato da Francesca Brigida 0

Contatti

Per qualsiasi tipo di informazione, suggerimento, proposta, critica o richiesta, scrivici a info@chimicaorganica.net

Tag popolari

acidi Aforismi alcani alcheni anidride carbonica antipodi ottici atomi primari atomi secondari atomi terziari basi butano carbonio carbonio asimmetrico chimica chimica organica chiralità delocalizzazione elettronica dispense chimica doppio legame frasi GPL idrocarburi idrocarburi insaturi idrocarburi saturi isomeri isomeria isomeria di posizione isomeria di struttura isomeria geometrica isomeria ottica isomeri conformazionali isomeri geometrici laboratorio Lavoisier legame pigreco metano paraffine radicali liberi reazioni reazioni organiche serie omologa sostituenti stereoisomeri stereoisomeria teoria chimica